Measurement results: For each device, the gm IV/gm RF compari-
son is performed at three different points of the characteristics.
These three points correspond to low, medium and high values of
V,s and a constant value of V. At each point, gm_IV is calculated
from pulsed IV curves and gmIRF is extracted from the pulsed S-
parameter measurements. Then, the relative discrepancy is calcu-
lated at each point as

_RF — gm.
Discrepancy(%) = gmgm—_[‘;]/mni x 100

Fig. 1 shows typical results obtained for a PHEMT from the first
foundry characterised with the HP pulse system. Note that at V,
= 0.7V, the discrepancy is < 10%. The discrepancy increases as
Vs gets higher and finally we obtain a value of gm RF that is
almost 40% higher than gm_IV at V,, = 0V. Fig. 2 presents typical
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Fig. 2 gm discrepancy obtained for PHEMT from second foundry,
measured with IRCOM pulse system

v, =3V

results obtained for a PHEMT from the second foundry character-
ised by using the IRCOM pulse system. Again, we can notice that
the discrepancy is small at low V, voltages but increases until a
value of gm_RF that is 40% higher than gm IV at V,, = 0.5V. The
results concerning the HEMT device are shown in Fig. 3. This
device has been measured in both pulsed systems. We can again
observe a gm_RF that is significantly larger (by 50%) than gm IV
at high V, values (V,, = 0.8V). Notice that both pulse systems
provide similar results. The same analysis has been performed for
different values of the drain voltage, giving the same behaviour in
the gm comparison.
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Fig. 3 gm discrepancy obtained for HEMT device, measured with both
pulse systems

IRCOM pulse system
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Discussion and conclusions: Because thermal effects are avoided in
this analysis, it is thought that the discrepancies obtained in the
comparison of gm RF/gm IV originated from changes in the trap
state during the pulsed I-V characterisation. This means-that trap
time constants exist that are smaller than the pulsewidth used for
the I-V characterisation (600ns in our case); therefore, they can
react to the change of V. Under such conditions, the trap state is
no longer fixed by the quiescent bias point but changes with each

2 LADBROOKE,, and

pulse level and the pulsed characterisation is no longer performed
under isotrapping conditions. Since the study shows a gm IV
more than 40% smaller than gm RF at high voltages, nonlinear
models extracted from pulsed I-V characteristics can lead to inac-
curate results in large-signal simulations.

Discrepancies between gm RF and gm IV in HEMT and
PHEMT devices have already been presented [6] using DC and
CW data. However, to our knowledge, this is the first time that
pulsed systems have been used to perform the comparison, which
eliminates self-heating as the origin of the discrepancy and reveals
the existence of trap time constants faster than 600ns.
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Energy function for learning invariance in
multilayer perceptron

HanChuan Peng, Lifeng Sha, Qiang Gan and Yu Wei

A new energy function is proposed for forming self-adapting
ordered representations of input samples in a multilayer
perceptron. Simulation results on unconstrained handwritten digit
recognition give a better invariance extraction for this model than
for several other models.

Energy function: The mechanism of the visual system for extract-
ing invariances from significantly varying input patterns has been
discussed for a long time, but the McCulloch-Pitts neuron has not
been accepted as providing a reasonable explanation for the origi-
nation of such an ability as associating clearly unlike patterns,
unless a more complicated neuron model or a network of simple
units is employed [1]. Recently, a trace neural network [2, 3] has
been proposed for learning self-adapting representative codes of
input samples. Unfortunately, that network cannot give a satisfy-
ing performance for realistic tasks. Here, we propose a new energy
function for gaining a sparse trace neural network which gives an
improved invariance extraction performance.

Consider an M-class classification problem treated by a three-
layer perceptron, which contains a linear input layer (IL) with 7
neurons, a nonlinear hidden layer (HL) with J neurons for feature
finding, and a nonlinear output layer (OL) with M neurons for
classification. The HI consists of sigmoid units with outputs
defined as y(1) = fIZL, x(Ow,(N], where f{z) = 1/(1+e) is the acti-
vation function, X, is the ith input, and w;, is the connecting weight
from the ith input unit to the jth unit in the HL. The nonlinearity
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of neurons in the OL is the same as that in the HL. We extend
Foldiak’s definition for the trace of a neuron [1] to the trace of the
mth class of input patterns, T,(1) = n7,,(¢=1) + (1-n)(2), where 1
is the trace factor, and its component T,,(7) is the trace of the jth
unit y(¢). Then, we constrain neurons in the HL to minimise the
following self-energy function (SEF):

M 1 M T
B(t)=_ Bn(t)=5 > > [Tmilt=1) —y;(0F (1)
m=1

m=1 j=1

Here, B,(t) stands for the sum of the self-energy of all neurons in
the HL when the mth class of pattern is presented at a time 7.
Clearly, the minimisation of B(#) will result in small discrepancies
between the outputs of the HL and the related traces. Hence, fea-
tures produced by the HL can be relatively unchanged but will
also be affected by variant samples. B(?) is very different from
Stone’s model 4] which uses the quotient of a long-term average
on the neuron’s activation and a corresponding short-term average
to achieve a similar effect. Notice that the slow convergence of the
minimisation of B(7) and its zero-solution are prevented by sum-
ming the square of the difference between the current output and
the previous trace (but not the current trace).

To some degree, the trace can be observed as the intra-class
average. It is helpful for the post-processing when relatively steady
traces are learned. However, learning such an ‘average’ on a large
training set will result in overlapping traces, corresponding differ-
ent classes, and thus poor post-processing performance. Notice
that B(r) only describes the behaviour of particular neurons, but
the overlap of traces is indeed the behaviour of the neuron cluster
HL. One way to attack this contradiction is to define a mutual
energy function (MEF) to make use of the mutual influence of
neurons. Generally, an even function which monotonously
increases in the positive semi-axis can be a candidate of the MEF,
eg. S0 = 0521, In[l1+y(#)] Actually, by minimising such a
function the number of neurons with the same activation can be
reduced and, in many cases, some sensible sparse codes of input
patterns can be learned [5]. These sparse codes are somewhat fac-
torial with reduced statistic dependence between each other and
are advantageous for sequential processing. We define the total
energy of the invariance extractor HL to be the weighted sum of
SEF and MEF:

E=SEF+r -MEF=B+rS (r>0 (2

where r is a sparseness factor. In this case, the multi-layer percep-
tron can be called the ‘sparse trace neural network’ (STNN).
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Fig. 1 Typical samples in digit database

Algorithm and simulation: We apply the following gradient-descent
learning scheme to minimise F:

Awji(t) = —a 8@?5( 5
= | T (t=1) 1,0 = 2 | = (Ol (012

3)

where o, is a learning factor. Weights can be prevented from being
too large by the constraint 7, w?, = ¢, where the constant ¢ is the
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amplitude of normalisation. The feature extractor HL self-organ-
ises according to eqn. 3 to find invariances, which are used by the
backpropagation (BP) type classifier OL for categorising input
patterns.

A typical example for examining the ability of invariance
extraction is unconstrained handwritten character recognition [2,
3]. An unconstrained handwritten digit database from CEN-
PARMI lab in Canada is used to investigate the feature extraction
ability of STNN. This database contains 6000 digits in which we
randomly selected 4800 digits as a training set while using the
other 1200 as a testing set. Typical samples of the handwritten dig-
its are shown in Fig. 1. All samples are normalised to 16x16. 5x5
sized weight masks are used to connect the IL and the HL (a 5x5
block in the IL is connected by a weight mask to a neuron in the
HL). Therefore, the IL, HL and OL are 20x20, 12x12 and 10,
respectively, with empty margins of two pixels around input pat-
terns. In our experiments, all weights are initialised to be random
numbers from a uniform distribution on [-1,1}. Initial traces are
obtained by averaging the feedforward computed results of all
training samples. All parameters are chosen to be as close as pos-
sible to those employed by Wallis [2, 3].

Fig. 2 Traces before and after learning

a Initial traces
b Final traces

A small part of the training set is first used to examine the
invariance extraction from short sample sequences [2]. 100 samples
are picked out randomly in the whole training set (10 samples per
class) for training. The average recognition rate of the STNN on
the whole testing set is shown in Table 1, where the recognition
rate needed in training is also given in parentheses. For compari-
son, a recent result on a similar database given by Wallis is listed.

Table 1: Recognition rates on testing set

Notmodel_| Shor anpl [ Long
% Y%
Wallis [2] 55 (95) —
BP net 57.92 (95) 90.5 (>99)
STNN 6483 95 | 90.5 (=91)

Also, results of the standard BP network with an identical topol-
ogy are shown. It is quite clear that the invariance extraction layer
in the STNN is stronger than that in the models used for compar-
ison. In fact, Wallis’s model is far from giving a satisfactory per-
formance for realistic character recognition tasks. However, even
when the whole training set is used to investigate the invariance
extraction from long sample sequences, the STNN still performs
remarkably for its close recognition rates on the training set and
the testing set, which implies that the STNN can extract the most
interesting invariance for characterising input patterns. On the
contrary, the larger difference for the BP network indicates that its
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trained weights are not as good at characterising the testing set.
The outstanding ability of the STNN for feature finding can be
further noted by comparing the initial and final traces, as shown
in Fig. 2. The traces can evolve from the initial disorder (Fig. 2a)
to obvious ordered structures (Fig. 2b). This property cannot be
observed when only B(f) is employed in learning. Hence, the
importance of MEF can be validated as helping the self-clustering
of classes.

Discussion and conclusion: Our STNN scheme is quite different
from the optimal training signal mapping model presented by
‘Wallis [3]. The STNN does not only show good invariance extrac-
tion on a small training set (short pattern sequences), as accom-
plished by Wallis’s model, but also exhibits a good learning ability
for a large training set in realistic tasks (long pattern sequences).
For this purpose, a new energy function for self-organising the
neural network feature extractor is presented. Extracting the
invariance from input patterns is a self-organising minimisation
process of such an energy function. Our simulation has shown
inspiring, good results.
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Bidirectional transmission of 40 Gbit/s WDM
signal over 100km dispersion shifted fibre

Chang-Hee Lee, Sang-Soo Lee and Seo Yeon Park

The authors demonstrate bidirectional transmission of a 40Gbit/s
(4 X 10Gbit/s) WDM signal over 100 km of dispersion shifted
fibre at ITU-T standard wavelengths. The cross-talk penalties
induced by Rayleigh back-scattering and four-wave mixing are
suppressed by using an arrayed-waveguide grating demultiplexer
and channel allocation, respectively.

Introduction: Bidirectional transmission over a single fibre has
been investigated for efficient use of optical fibre and for bidirec-
tional optical networks. In bidirectional transmission systems,
Rayleigh back-scattering and optical reflection degrade the system
performance and induce an optical power penalty [1, 2]. The
induced penalty was suppressed by using a fibre grating, and
bidirectional transmission of a 10Gbit/s signal over 240km of
DSF (dispersion shifted fibre) was demonstrated [3]. For a WDM
signal, bidirectional transmission at 40Gbit/s (4 x 10Gbit/s) over
100km of DSF was reported [4]. Two amplification bands of an
EDFA were used, ie. 1530 and 1550nm bands, to reduce the
induced penalty. In this Letter, we demonstrate bidirectional
transmission of a 40Gbit/s (4 x 10Gbit/s) WDM signal over
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100km DSF at ITU-T standard wavelengths in the 1550nm ampli-
fication band. The cross-talk induced by Rayleigh back-scattering
and optical reflection is suppressed by using an AWG (arrayed-
waveguide grating) demultiplexer. The four-wave mixing penalty is
also minimised by channel allocation.

DSF 100 km

EDFA
1552.52 MOD cir 1550.92 ;
21555.75 1554.13
~ 1557.36%
1558.98%

ORX

10 Gbit/s pattern D error
D generator detector
.

Fig. 1 Experimental setup for bidirectional tranmission of 4 X 10Gbit/s
WDM signal over 100km DSF

AWG: arrayed-waveguide grating; cir: circulator; MOD: modulator;
ORX: optical receiver
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